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Abstract

Measurement of human hand and body motion is an important task for
applications ranging from athletic performance analysis to advanced user-
interfaces. Commercial human motion sensors are invasive, requiring the
user to wear gloves or targets. This thesis addresses noninvasive real-time
3D tracking of human motion using sequences of ordinary video images. In
contrast to other sensors, video cameras are passive and inobtrusive, and
can easily be added to existing work environments. Other computer vi-
sion systems have demonstrated real-time tracking of a single rigid object
in six degrees-of-freedom (DOFs). Articulated objects like the hand present
three challenges to existing rigid-body tracking algorithms: a large number
of DOFs (27 for the hand), nonlinear kinematic constraints, and complex
self-occlusion effects. This thesis presents a novel tracking framework for
articulated objects that uses explicit kinematic models to overcome these
obstacles.

Kinematic models play two main roles in this work: they provide geomet-
ric constraints on image features and predict self-occlusions. A kinematic
model for hand tracking gives the 3D positions of the fingers as a function
of the hand state, which consists of the pose of the palm and the finger joint
angles. Image features for the hand consist of lines and points which are
obtained by projecting finger phalanges and tips into the image plane. The
kinematic model provides a geometric constraint on the image plane posi-
tions of hand features as a function of the hand state. Tracking proceeds by
registering the projection of the hand model with measured image features
at a high frame rate.

Self occclusions are modeled by arranging the image features in overlap-
ping layers, ordered by their visibility to the camera. The layered repre-
sentation is generated automatically by the kinematic model and used to
constrain registration. This framework was implemented in a hand tracking
system called DigitEyes and tested in two sets of experiments. First, a hand
was tracked in real-time using two cameras and a 27 DOF model, and using
a single camera in a 3D mouse user-interface trial. Second, the occlusion
handling framework was tested off-line on a motion sequence with significant
self-occlusion. These results illustrate the effectiveness of explicit kinematic
models in 3D tracking and analysis of self-occluding motion.
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Chapter 1

Introduction

Tracking the motion of hands and bodies in three dimensions (3D) is an
important task for applications in computer graphics, athletic performance
analysis, and user-interfaces. Commercial human motion sensors are invasive,
requiring the user to wear gloves or targets [74, 37]. For example, current
motion capture systems work by recording the 3D trajectories of magnetic
trackers or optical targets attached to the user’s hands and limbs. These
trajectories are used in computer graphics applications to imbue animated
characters with realistic motion [54]. In other examples, various glove-based
sensors for palm and finger motion have been used to interpret sign lan-
guage [17] and control 3D CAD models [9]. In all of these cases, the use-
fulness and convenience of the sensor is limited by the need to wear clumsy,

bulky devices, often tethered to an external computer.

This thesis addresses the noninvasive real-time tracking of human motion
using sequences of ordinary video images. In contrast to other sensors, video
cameras are passive and inobtrusive, and can easily be added to existing work
environments. Other computer vision systems have demonstrated real-time
tracking of a single rigid object in six degrees of freedom (DOFs) [20, 35].
Articulated objects like human figures and hands present three difficulties

for these existing algorithms: the large number of DOF's required to describe
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their motion, nonlinearities in the mapping from the DOFs to the image
motion, and the presence of complex occlusion effects, when one part of the
body blocks the camera’s view of another. This thesis explores the use of
explicit kinematic models in a local tracking approach to overcome these
difficulties. It describes a tracking framework for general articulated objects
and presents experimental results for 3D hand tracking from natural image

sequences.

1.1 Tracking with Kinematic Models

The kinematics of an articulated object provide the most fundamental con-
straint on its motion. Chapter 2 presents a general model-based framework
for tracking with kinematic constraints; this section outlines its application
to hand tracking. In the case of the hand, motion of the fingers and palm
in 3D is constrained by the skeleton. The relationship between these skele-
tal constraints and a hand image is illustrated in Fig. 1.1(a). The black
overlay shows the projection of a 3D kinematic hand model, illustrated in
Fig. 1.1(b), into the image plane. The finger phalanges (links) are drawn as a
set of black “T” shapes, connected together at the knuckles. Each phalange
is represented by a cylinder, and each T shows the radius and axis of the
cylinder’s projection into the image. When the model has been registered to
the image correctly, as in the figure, the projected cylinders are aligned with
the fingers.

Local tracking consists of a series of registration problems in which the
configuration of the 3D hand model is adjusted so that its projection is
aligned with the current image. At the start of tracking, the image and the
model are registered. For each subsequent image in the motion sequence,
small corrections are made to the state of the hand that minimize the reg-
istration error. The state vector for the hand contains the pose of the palm

and the finger joint angles. The registration error is described by a residual
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function, which is minimized by the state correction in each frame. This
thesis explores two types of residual functions: Sum of Squared Differences
(SSD) and geometric feature residuals. The SSD residual measures the inten-
sity differences between the image and a template model for each body in the
articulated object. A collection of templates can represent a wide variety of

link shapes. Furthermore, since templates explicitly describe the region each

link occupies in the image, they are useful in tracking self-occluding objects,
as Chpt. 3 describes.

Figure 1.1: (a) Hand image with projection of 3D kinematic model overlaid
in black and detected line and point features shown in white, and (b) 3D
view of the hand model which is registered to the image in (a).

Images of hands and bodies can also be described by a collection of line
and point features, as the “image skeleton” shown in Fig. 1.1 illustrates.
In this example, pairs of lines and point features, drawn in white, mark
the edges of the finger phalanges and the finger tip centers. The geometric
feature residual used in this case measures the distance between the pro-
jected 3D model (the black overlay) and the measured line and point features
(the white overlay.) This feature residual approximates the SSD residual for
roughly cylindrical objects like finger phalanges and limbs. A simple, effi-
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cient algorithm for detecting the geometric features is described in Chpt. 4.
It forms the basis for the real-time tracking experiments described there.
The residual error for each image is minimized using a gradient-based ap-
proach. The kinematic Jacobian for the articulated object is a key component
of the residual gradient. It plays a role in articulated object tracking that is
similar to its use in robot control. This duality is exploited in Sec. 2.5.4 in
the study of kinematic singularities, which arise when certain states have no
instantaneous effect on the image features. The geometric feature residual
can be used to identify these singular cases, because it provides a closed-form
expression for registration error as a function of the state. A standard tech-
nique for stabilizing rigid body trackers is shown to be effective in dealing

with these singularities.

1.2 Tracking Self-Occluding Objects with Lay-
ered Templates

When the motion of an object like the hand is sampled at a high frame rate,
the occlusion relations between its bodies hardly ever change. When they
do, the change can be predicted from the kinematic model. This observa-
tion is exploited in Chpt. 3 to remove the estimation of occlusion from the
tracking problem, leaving only the registration of partly occluded templates.
The result is a layered representation of self-occlusion that is dynamically
updated by the kinematic model. A set of rules for hand template ordering
are developed through an analysis of planar kinematic chains.

The registration framework from Chpt. 2 is extended to the overlapping
template case through the introduction of window functions that mask off
the contributions of occluded templates. The presence of window functions
complicates the derivation of the residual Jacobian. However, the structure

of the layered templates can be expressed in a window tree, and analyzed to
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Figure 1.3: A sample graphical environment for a 3D mouse. The 3D cursor

is at the tip of the “mouse pole”, which sits atop the ground plane.

plication, to test its practical usefulness as an input device. The resulting
non-invasive interface gives the user control over a 3D cursor in a graphical
environment, using images from a single calibrated camera. Figure 1.3 shows
sample output from the interface.

In the final experiment, described in Sec. 4.4, an off-line version of the
DigitEyes system was used to test the self-occlusion framework of Chpt. 3. A
75 frame image sequence of two fingers undergoing significant self-occlusion

was successfully tracked.
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1.4 Contributions

This dissertation makes five main contributions:

1. Analysis of the application of kinematic models to visual tracking of
articulated objects, addressing Jacobian singularities and sensitivity, as

well as techniques for efficient Jacobian computation.

2. The first experimental demonstration of real-time tracking (at speeds of
up to 10 Hz) of a high-DOF articulated object (a 27 DOF hand model),
using both monocular and stereo image sequences of unadorned, un-

marked hands [46, 48].

3. Application of the DigitEyes sensor to the 3D mouse user-interface
problem, demonstrating the feasibility of 3D human sensing at reason-

able accuracy levels using currently-available hardware [47].

4. The identification of a local ordering invariant for self-occluding objects,
an analysis of its existence conditions, and the design of a tracking

algorithm for self-occluding motion [49].

5. The first experimental demonstration of nontrivial 3D articulated ob-

ject tracking in the presence of self-occlusion [50].

These results extend previous techniques in computer vision for rigid body
tracking and demonstrate the feasibility of vision-based 3D human motion

sensing.
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Chapter 2

Tracking with Kinematic
Models

The motion of an articulated object like the hand is determined by its skele-
ton. A camera can only observe the skeleton indirectly, however, through its
effect on the skin. Skin and clothing deform during hand and body motion,
producing nonrigid effects in an image sequence. The magnitude of these
nonrigid components is small, however, compared to the effects of rigid, ar-
ticulated body motion. This dissertation treats nonrigidity as unmodeled
noise in the measurements of rigid, articulated objects. Experimental hand
tracking results, presented in Chpt. 4, demonstrate the efficacy of this as-
sumption. They are corroborated by experimental results for body track-

ing [23, 29], which make a similar assumption.

2.1 The Role of Kinematics in Visual Tracking

The use of kinematic models is vital for 3D tracking. As an example, consider
the problem of estimating the pose of the first finger in the image of Fig. 1.2.
The true finger pose and its projection into the image are shown with a
line drawing in Fig. 2.1 (a). The line drawing is a useful abstraction of the

geometric information contained in the image. For simplicity, assume that

9
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Sample Plane

Finger Plane

@ (b)

Figure 2.1: (a) Stick drawing of image features and model for the first finger
in Fig. 1.2 and (b) two models with different kinematics that produce the
same image.

the finger lies in a plane in space, and the camera model is orthographic.t
From the geometry of figure (a), it is clearly impossible to determine the 3D
pose of links ab, be, and ed from the image points {a’,b’,c’,d’'} without a
kinematic model. In fact, for any sample plane in 3D there exists a finger
configuration that produces the given image. Fig. 2.1 (b) gives one example.
A unique solution is possible only when the link lengths are known. Only in
this case is the orientation of a link along the camera axis determined by its
projection in the image.

The example in Fig. 2.1 also illustrates the difference between errors in
registration and errors in 3D pose (state) estimates. Registration refers to
the alignment between an image and the image plane projection of a 3D
model. As Fig. 2.1 (b) illustrates, it is easy to achieve zero registration error
without a kinematic model for any sample plane position, by aligning the
projections of {a, b, ¢, (él} with {a’,b’,¢’,d'}. The corresponding pose error

can be arbitrarily large, however, as the sample plane rotates away from the

'In orthographic projection, all rays from the scene to the camera are parallel.
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true finger plane. Now suppose that a kinematic model is available, as in
Fig. 2.1 (a), but that the model itself has some error. When the model errors
are small, the pose error will also be small. The registration error will be
nonzero in this case, as no configuration of the incorrect model will match
the image exactly. A kinematic model makes it possible to extrapolate image
registration into three dimensions. The quality of this extrapolation depends
on the accuracy of the model.

There are two other sources of 3D pose information besides a kinematic
model: shading and stereo. The shading in an image of the hand varies with
its spatial orientation. These intensity changes carry information about the
3D pose of the palm and fingers. Shading cues are an important component
of human perception, but exploiting them in a vision algorithm is known to
be extremely challenging. In hand images, shadows and lighting variations
make it difficult to interpret intensity changes correctly. As a result, it is
unlikely that the accuracy of pose estimation due to shading alone would
exceed that available from the kinematics.

Stereo is the second alternative approach to pose estimation, for links
that are visible in two or more camera images. In stereo, triangulation with
corresponding pairs of image points, such as {a;,a;} in Fig. 2.2, produce 3D
estimates of {a, b, ¢, d}. Stereo is inadequate by itself, however, when a link is
not visible in both views due to occlusion, a common occurrence in practice.
But suppose that a kinematic model is available in addition to stereo. In
this case, localizing three of the points by stereo determines the plane of
the finger, and the position of the fourth point can be determined from a
single view. This illustrates another key feature of the kinematic model: it
captures redundancy in the measurements, which leads to an overdetermined
estimation problem.

Kinematic models play three main roles in tracking. First, they param-
eterize the DOF's on the object, and provide a mathematical representation

for the output of the tracking algorithm— a trajectory in state space. Sec-
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Imagel X

Figure 2.2: Use of an additional stereo image to reconstruct the 3D pose of
the finger depicted in Fig. 2.1 (a).

ond, they express constraints on the motion of the rigid bodies making up
the articulated object. These constraints lead to an over-determined estima-
tion problem in the image measurements, which is desirable for good noise
properties. Third, the kinematics also constrain the possible occlusions be-
tween the rigid bodies. Kinematic analysis plays an important role in the

development of tracking algorithms for self-occluding motion in Chpt. 3.

This chapter begins with a brief description of the mathematical founda-
tions of kinematic modeling. These representations originated in the robot
manipulation literature, but have been adapted slightly to meet the require-
ments of visual tracking. This presentation is significantly more complete
than any that has appeared in the visual tracking literature to date. The
application of kinematic modeling techniques is illustrated for the hand. The
resulting kinematic hand model is employed throughout this thesis. Calibra-
tion of kinematic and camera models are described, along with the effect of

their errors.
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The second half of the chapter describes the incorporation of kinematic
models into tracking algorithms. The kinematics provide a forward model
for the object, generating predicted images as a function of the estimated
state. This chapter addresses the geometric component of the forward model,
and ignores the effects of occlusion. In this chapter, every rigid body in the
model is assumed to be completely visible to the camera. The forward model
interacts with the input image through a residual error measure. Minimizing
the residual through gradient-based algorithms brings the projection of the
model into alignment with the input images.

The image intensities generated by the object determine the measure-
ments that are available for tracking, and therefore the form of the resid-
ual error. Two residual errors are examined here. The first is a general
template-based residual that can be applied to arbitrary articulated objects.
The second residual is derived from geometric line and point features that ap-
proximate the template residual in the case of objects, like hands and bodies,
made up of cylindrical links. The feature residual is a closed form expres-
sion that is amenable to analysis and real-time implementation on modest

computing hardware.

2.2 Kinematic Modeling of Articulated Objects

[ employ standard kinematic modeling techniques from robotics [59] to rep-
resent skeletal constraints for tracking. These models have been used for
decades to solve robot control and path planning problems. They have
good theoretical properties and support efficient on-line algorithms. Denavit-
Hartenberg notation, for example, provides a standard description for kine-
matic chains like the finger. This notation has already been employed in
hand models for computer graphics [52], but has not been used explicitly
in hand or body tracking to date. One of the goals of this thesis is to ex-

plore the connections between articulated tracking and robot control more
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carefully than previous authors. For example, historical robot control issues
like kinematic singularities have close parallels in hand tracking, as I will de-
scribe later in Sec. 2.5.3. Developing these parallels makes techniques from

the robotics literature available for articulated tracking analysis.

All previous work on 3D human tracking employed some form of kine-
matic model. The two earliest systems, by O’Rourke and Badler [42] and
Hogg [23], predated the widespread popularization of robot kinematic mod-
els by Paul [43]. They employed their own customized kinematic representa-
tions. The use of robot kinematic models for human body tracking was first
proposed by Yamamoto and Koshikawa in [72]. This work did not present
a detailed modeling framework, however, but relied on a separate software

package for kinematic computations.

The kinematic models described in this section form the basis for all of
the tracking algorithms in this thesis. Mathematical representations of object
kinematics are presented here in detail. Following this description, a kine-
matic hand model is derived from an anatomical study. This illustrates both
the usefulness of the modeling framework and the specific concerns of kine-
matic modeling for visual tracking. Models must be calibrated before they
can be used, and the calibration process, along with the effects of calibration

errors, is described at the end of the section.

2.2.1 Coordinate Frames and Transformations

An articulated object is made up of rigid bodies, called links, connected
by joints. Each link has its own coordinate frame in the kinematic model,
and pairs of link frames are connected by coordinate transformations. A
coordinate transform from frame ¢ to frame j, written Tf, is specified by a

rotation matrix R and translation vector d?, arranged in a 4x4 homogeneous
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in the model. It is convenient to add an additional shape coordinate frame
to each link, which positions the visible geometry relative to the link frame.
Having an additional frame is useful, as the coordinate frame choice which is
best for the kinematic description may not be the best for shape modeling.
The choice of shape frame, like the choice of link coordinates, depends on
the application. The specific choices made in hand modeling are described

in the next section.

A series of links connected by joints forms a kinematic chain. The posi-
tion of any link in the chain can be obtained by multiplying transformation
matrices. For example, the position of the link 3 frame in Fig. 2.3 with re-
spect to the camera is given by T2 = (T¢)~'T, TiT; = T*T. T{T5. Joints
are modeled by parameterized coordinate transformations, Tf(v), called joint
transforms. A joint transform has the form of Eqn. 2.1, but is a matrix func-
tion of a vector v of kinematic parameters, such as joint angles and link

lengths.

Link frames and joint transforms make up the topological part of the
kinematic model— they specify the number of rigid bodies and their inter-
connections. The topological part of a human kinematic model comes directly
from basic anatomy. A finger, for example, consists of three phalanges (rigid
links) connected in series by the two knuckle joints. Kinematic parameters
for the joint transforms make up the parametric part of the kinematic model.

They consist of the object’s DOFs and any fixed model parameters.

The two types of joint transforms used in this thesis are spatial transforms
and Denavit-Hartenberg transforms. Spatial transforms model the six DOF's
between two link frames that are not in physical contact. It is used in the
hand model to position the palm relative to the world frame. 1 use quater-
nions to represent the rotational part of the spatial transform. Quaternions

encode the axis-angle representation of rotation with four parameters.® Three

3See [38] for general information about quaternions and spatial transforms.
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parameter representations, like Euler angles, have singularities at which their
Jacobian loses rank, making tracking more difficult. These singularities are
not a natural result of the kinematics, but an artifact of the parameter-
ization. Since an object like the hand may achieve an arbitrary pose with
respect to a given camera, it is difficult to ensure that singular configurations
are avoided. Quaternions are the minimal singularity-free representation of
the rotation group [60]. They have a long history of use in satellite con-
trol [69], and more recently in vision [21] and computer graphics [58]. The
resulting spatial transform has seven parameters.

Since the four quaternion variables are not a minimal description of ro-
tation, they are subject to a unit norm constraint that reduces their DOFs
to three. Specifically, a quaternion vector Q must satisfy Q7Q = 1 at all
times. As a result, quaternion-based tracking is technically a constrained
estimation problem. I follow the practice described in [22] of expressing the
quaternion rotation matrix in a form that includes the normalization. The
resulting quaternion estimate is re-normalized periodically to prevent the
accumulation of numerical errors.

When two links are physically connected by a joint, the coordinate trans-
formation between them must have fewer than six DOFs. The Denavit-
Hartenberg (DH) notation [13] provides a consistent parameterization in this

case. Each DH transform is composed of four basic transformations:
T?H((gi, di, as, ozi) = ROtZ((%)TI‘&HSZ(di)TI'anSw(ai)ROtw(Oéi) 5 (22)

where Rot(-) represents a rotation about a given axis, and Tran(-) a trans-
lation along it. See [59], Fig. 3-4, for an illustration of the general DH
transform, which is widely used in robotics. The parameters {6;, d;, a;, o; },
along with the choice of the link frame, can be used to model all lower pair
joints of interest. The DH parameters can be divided into two groups: state
variables, which represent the DOFs of the object at the joint, and fixed

parameters, which describe the object’s geometry and are unchanged by its
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Figure 2.4: Hand skeleton and joints. This is Fig. 1 from [61], used with
permission.

motion.

The kinematic representation described above can be applied to a wide
variety of objects, from humans to industrial robots. In the next section, it
is used to develop a hand kinematic model, which is employed in all of the

tracking experiments in this thesis.

2.2.2 A Kinematic Hand Model

Kinematic models for visual tracking need only describe motion which a

camera can measure. As a result, they can be considerably simpler than those
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Finger chains are built up from revolute joints, which constrain two links
to a single rotational DOF around the joint axis. Figures 2.3 and 2.5 illustrate
the link frame assignments for the revolute joint model. The frame for link ¢
is chosen so that §; (in Eqn. 2.2) is the revolute joint angle, and the negative
x axis passes through the joint center of link ¢ — 1. With this choice of
coordinates, the DH kinematic parameters d; and «; are zero, and a; equals
the link length. Making these substitutions in Eqn. 2.2 gives the revolute

joint transform
Tf’l = Rot.(0,)Trans,(L;) , (2.3)

where L; is the length of the sth link. The link lengths are the fixed param-
eters in the kinematic model. They are determined before tracking begins
through a calibration process described in Sec. 2.2.3. Once they have been
specified, the state variables 6; completely determine the configuration of the
finger chains. Each finger contributes four joint variables to the state vector.
The arrows in Fig. 2.5 illustrate the axes of the revolute joints of the fingers
and thumb. The two DOFs at each finger MCP joint are modeled by a pair
of revolute joint transforms, each with a single DOF. Arbitrary compound
joints can be described in this manner. The shape frame for finger links is
positioned at the joint center, immediately following the link rotation. Thus

the transform between link and shape frames is given by
T! = Rot.(0;) (2.4)

Table 2.1 presents the kinematic model of the palm and first finger in
its full detail. This is an excerpt from the table in Appendix A containing
the complete hand kinematics. The table is a formatted version of a file the
DigitEyes tracking system reads in when building its kinematic model. Each
frame is numbered, and its entry in the column titled Next is a pointer to
the frame that follows it in the chain. These pointers specify the topology

of the kinematic model. Joint transforms are automatically created for links
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This effect is modeled by placing an additional revolute DOF at the thumb
MP joint, as shown in Fig. 2.5. Placing the oppositional DOF there, rather
than at the base, helps limit its impact on the model. This choice was
motivated by the experience of Rijpkema and Girard in their grasp modeling
system [52]. They employed a similar thumb model and obtained realistic
computer graphic animations of hand grasps. Aside from this extra joint, the
thumb model is quite similar to that of the fingers, with two DOFs at the
trapeziometacarpal joint and one each at the thumb MP and IP joints. The
thumb occupies frames 29 through 36 in the kinematic table of Appendix A.

Real hands deviate from the above modeling assumptions in three main
ways. First, most fingers are slightly nonplanar. This deviation could be
modeled by allowing nonparallel joint axes, but the planar approximation
has proved to be adequate in practice. Second, the last two joints of the
finger (the distal and proximal interphalangeal joints) are driven by the same
tendon and are not capable of independent actuation. It is simpler to include
these DOFs separately, however, than to model the complicated angular
relationship between them. The third deviation stems from the rigid palm
assumption, which ignores the metacarpocarpal joints at the base of fingers
4 and 5 (see Fig. 2.4). When gripping an object, like a baseball, these joints
permit the palm to conform to its surface, causing the anchor points to move
by tens of millimeters. For free motions of the hand in space, however, this
deviation is small enough to ignore.

The full hand model consists of 16 rigid bodies and a 28 dimensional state
vector. The kinematic model described above is fairly standard, and closely
related models have appeared in the user-interface, computer graphics, and
biomechanics literature [61, 52, 66]. The most common difference between
kinematic hand models is in their treatment of the metacarpophalangeal and
trapeziometacarpal joints. This dissertation does not explore these subtleties
of hand modeling in any significant detail. Kinematic modeling issues are

secondary to the more basic concerns of real-time tracking and occlusion-



2.2. KINEMATIC MODELING OF ARTICULATED OBJECTS 23

handling which are the focus of this research. Once a solid foundation for
visual articulated object tracking has been established, the development of

accurate kinematic models for specific applications can be explored in earnest.

Articulated objects like the hand are subject to other motion constraints
besides the kinematic joints which are the focus of this chapter. Regions
of the state space may be inaccessible to the model, for example, due to
joint limits and non-interpenetration. This leads to inequality constraints
on the state estimates. Moreover, as a result of actuation and motor control
patterns, groups of states will often be coupled during characteristic motions.
For example, the fingers will follow similar state trajectories in making a fist.
Since these constraints act on the state space at a level above the basic

kinematics, they were not addressed in this work.

Kinematic models for the entire body could be developed using the meth-
ods described in this section. In fact, the body’s kinematics are topologically
quite similar to those of the hand, with the torso playing the role of the palm
and the arms and legs taking on the role of the fingers. Like the fingers, the
kinematic chains of the arms and legs are predominantly planar. One point
of departure is the much greater flexibility of the torso compared to the hand

as a result of the spinal column.

Adopting kinematic representations from robotics makes it possible to
track any articulated object with the same mathematical framework. This
generality is reflected in the software implementation of the Digit Eyes track-
ing system. Any object that can be modeled using the techniques of this
chapter can be tracked simply by changing the file illustrated in Table 2.1.
This capability is exploited in Chpt 4, where different subsets of the whole-
hand model are employed in separate experiments. To use a kinematic model
for tracking, its fixed parameters must be determined from the actual, phys-
ical hand. This is accomplished in the kinematic calibration stage described

next.
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2.2.3 Kinematic Model Calibration and Errors

Calibrating the kinematic model by setting its fixed parameters is the most
challenging aspect of hand modeling. The 21 joint axes, 15 link lengths,
and 5 anchor points of the hand were determined in a three stage off-line
calibration process. First, the joint axes were initialized following the finger
and thumb anatomy of the previous section. Next, the link lengths were
determined in two steps. In the first step, the distances between the three
knuckles in each finger were measured with a ruler at the surface of the skin,
to give a rough length for each link. Then, the resulting kinematic model was
fit to each finger separately in two images taken with a calibrated camera:
finger outstretched and finger curled. The link lengths were tuned manually
until the projected hand model matched the images. Obtaining link lengths
for the fingers and thumb took about four hours.

Finally, the anchor points were determined in the last stage. They are the
most challenging parameters to calibrate, as they are difficult to measure on
real hands, and difficult to identify in images. The anchor point calibration
strategy exploited the known link lengths from the previous stage, and three
images of the back of the hand with fingers extended: one looking straight
down (called image 1) and two at oblique angles (images 2 and 3.) The
first step was the arbitrary assignment of the palm origin to the MCP joint
center of the first finger. Measurements with a ruler gave rough estimates of
the anchor points with respect to this frame in the x and y axis directions
(parallel to the plane of the palm, with the y axis pointing down the first
finger.)

Given these preliminary anchor points, an interactive version of the track-
ing system was used to fit the complete hand model to image 1. After a few
iterations, the anchor points were “released,” freeing each finger and thumb
to move independently of the palm. This allowed the base of each digit to

shift until the error in its tip and edge positions was minimized. The original
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anchor point and the current base of each finger and thumb were overlaid
on the hand image. Estimation was halted after a few iterations, and the
original anchor points were manually adjusted to agree with the new base
positions. This procedure was repeated with the two oblique images, to lo-
calize the anchor points along the z axis (out of the plane of the palm.) It
took a few hours to calibrate the anchor points. The calibration procedure
described above was performed once for my right hand, and the resulting
kinematic model was used in all subsequent experiments. It is presented in
Appendix A in its full detail.

The calibration goal of this dissertation was to obtain a useful kinematic
model as quickly as possible. The experimental performance of this model on
a wide variety of hand images indicates that this goal was achieved. However,
calibration is likely to remain a nontrivial component of any future model-
based articulated object tracking system. The adequacy of the hand model
calibration is discussed further in Chpt. 4, and an approach to automatic,
on-line calibration is discussed in Chpt. 6. The remainder of this section
presents a taxonomy of kinematic model errors, and describes their effect on
tracking performance.

Errors can occur in both the topological and parametric parts of the
kinematic model. Topological errors, like incorrect joint axes, are the result
of anatomical deviations from the model. For example, if a finger exhibits
a large deviation from planarity, the joint axes of the planar finger model
will be incorrect. As a result, it will be impossible to set the state variables
so that the finger links are registered with the image. This type of error is
easily detected by overlaying the model projection on the image.

Improper calibration can also produce errors in the link lengths and an-
chor points that make up the fixed model parameters. The effect of incorrect
link lengths is particularly striking. If the links are too long, the finger de-
velops obvious “kinks” in trying to fit its image. If the links are too short,

the model finger tip never reaches its match in the image. Errors in the an-
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chor points are the most difficult to detect and correct, as they may not be
apparent unless the model is fit to the image under a wide range of viewing
angles.

I encountered all three of these types of kinematic errors in the early
stages of hand modeling. They proved to be fairly easy to detect using an
interactive tracking system. The system I developed made it possible to fit
hand models to images, see the result in 3D from an arbitrary viewpoint, and
quickly modify the joint angles to observe their effect on registration. The
importance of having an interactive system when developing these models
cannot be over-emphasized. With this tool, the space of possible models
could be searched efficiently and problems diagnosed quickly. The interactive
system is described in more detail in Chpt. 4.

A calibrated kinematic model can be viewed as a mapping from the state
space to the 3D positions of the shape frames, which contain the visible sur-
faces of the links. The next stage in this mapping is the projection of the 3D
link geometry into the image plane. This is accomplished through a camera

model, which maps points from the shape frames into image coordinates.

2.3 Camera Modeling and Calibration

As with the kinematics, cameras can also be modeled by transformations
between coordinate frames. The imaging geometry of a pin-hole camera
is modeled by a projective transform between the camera and image buffer
coordinates [16]:
Oy 0 Up 0
PZ = 0 Oy Vo 0 . (25)
0 0 1 0
The intrinsic camera parameters, {a,, a,, ug, vo}, define the scale factors and
origin for the camera’s sensor array. The image coordinates of a 3D point p.

located in the camera frame are w = [14/2; yy/2s], where py = [2 yp 23] =
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‘p.. Let S[-] denote the scaling operator that returns the first two elements
of a vector divided by its third. Furthermore, let T¥ specify the camera
position with respect to the world frame (the extrinsic camera model.) The

projection of a world point p,, into the camera image can then be written
w = S[PT!p.] = S[Pp.] , (2.6)

where P is the 3x4 camera projection matrix.
When the distances between points on an object of interest are small
compared to the distance to the camera, the perspective projection model

can be approximated by orthographic projection

w = P{T"p, = Pp. , (2.7)
where

SDe Oy 0 0 Up

Pb_l 0 a, O UO] (28)

is an orthographic transform, and P is the 2x4 orthographic projection ma-
trix. The fact that the camera and kinematic transformations have a similar
algebraic form makes it easy to combine them in one representational frame-
work.

Camera models are specified by the sets of intrinsic and extrinsic parame-
ters. These parameters must be determined in a calibration stage before the
model can be employed for tracking. I used Robert’s calibration algorithm,
described in [53], for all of the experiments in this thesis. The algorithm
uses a single image of a cube of known size to determine both the intrin-
sic and extrinsic camera parameters. The procedure has two stages: First,
the user manually identifies the position of six predetermined points in the
cube image, and an approximate calibration matrix is generated. Second,
the approximate model is refined in an iterative stage using additional, au-

tomatically detected image features and a standard numerical minimization
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package. The advantage of Robert’s algorithm is that the image features are
continuously updated in the iterative stage along with the camera model,
reducing the effect of any initial errors in locating the image points.
Evaluating the accuracy of a calibrated camera model is a difficult task.
In theory, image features from two faces of the cube image provide sufficient
geometric constraints for calibration (see [16], Sec. 3.4.1.3). However, since
numerical minimization is employed, there is no guarantee that the stopping
point is the global minimum. A partial evaluation of the calibration accuracy
was obtained when a pair of cameras were calibrated for stereo experiments.
In this case, the epipolar lines for features in both images were examined
and found to be accurate to within the image resolution. Additional exper-
imental evaluation of Robert’s algorithm is described in [53]. An advantage
of calibrating with a cube target, as opposed to the series of grid positions
that are traditionally employed, is that multiple cameras with convergent
axes can be easily calibrated with respect to the same world frame (defined
within the cube.) The calibration cube was manufactured out of PVC plastic

to a tolerance of £0.003 in. on all dimensions, by K*T, Inc.

2.4 Tracking Through Template Registration

Visual tracking is a sequential image registration problem. The state estimate
in each frame minimizes the residual error between the projected object
model and the image. Different tracking approaches are distinguished by
the choice of residual function. In template registration, the residual error
measures the intensity difference between an input image and the image
predicted by the kinematic model. A set of templates describe the image
appearance of each link. The position of each template in the image is
given by the kinematic and camera models as a function of the state. State
estimates are obtained by minimizing the residual numerically.

This section has four parts. First, deformation functions are developed
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as illustrated in Fig. 2.6. The template plane determines the position in the
shape frame of each template pixel.

Given the approximate pose of a link relative to the camera, the appro-
priate template plane can be chosen automatically. The number of required
templates is a function of the shape and photometry of the link. For cylindri-
cal links, like finger phalanges, a single view may be enough, while an object
like the palm or body torso will require more. The number of required views
for cylindrical objects can be reduced significantly by allowing the template
plane to rotate around the axis of symmetry, maintaining a frontal camera
orientation.

The template plane model merges geometric and photometric aspects of
image appearance in a single framework. The orientation and position of the
template plane relative to the camera capture the effects of foreshortening
and rotation on the image of the link. The template pixels capture intensity
variations at a finer scale resulting from the shape of the finger phalanges.
A variety of features, from edges to textures, can be employed by changing
the form of the template.

Given the state of the hand, the image appearance of each link can be
synthesized by projecting its template plane through the camera model. The
combination of kinematic and camera transforms is represented by a de-
formation function [51], f(q,s), which maps template coordinates to image
coordinates as a function of the state. If s = [u v] denotes a template pixel
and w = [z y| denotes its corresponding image pixel, then w = f(q,s). This
mapping is illustrated in Fig. 2.6 for a finger tip template. The deformation
function is constructed from a series of coordinate transformations. Let the
coordinate axes of template [;, expressed in its shape frame, make up the
column vectors of the 3x2 matrix F;. Combining this with Eqns. 2.2, 2.4,
and 2.7 yields the orthographic deformation function

f;(q,s) = PT,(q)T(q)F;s . (2.9)
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Deformable template models have appeared in previous tracking and
registration work. Their use for pattern recognition goes back at least to
Widrow [70]. In 1981, Lucas and Kanade [36] proposed an image registra-
tion scheme using affine deformations that has become a standard solution to
optical flow and point tracking problems. In joint work with Andy Witkin,
I investigated an approach to 2D template tracking based on deformation
models [51]. In our approach, the arbitrary (rigid or nonrigid) motion of the
pixels was assumed to be the result of an unknown, but smooth, deformation
function. This unknown deformation was approximated by its truncated
Taylor Series, resulting in a family of polynomial deformation models. 1
developed a real-time system on an SGI GTX workstation that used these
models to track a small window of pixels, selected by the user, through an
image sequence. A related hierarchy of 2D motion models was published
later by Bergen et. al. [6]. The kinematic deformation model of Eqn. 2.9 is
a natural extension of this earlier work to a 3D tracking domain. A further
extension of this paradigm occurs in Chpt. 3, in addressing self-occluding

motion.

2.4.2 SSD Residual Error Function

The residual function for template registration measures the intensity dif-
ference between a deformed template and an input image. I employ the
standard Sum of Squared Differences (SSD) error measure between filtered
pixels. In the SSD approach, both the input image and the templates are
convolved with a filter and subtracted, squared and summed to obtain the
residual error. By changing the filter, different properties of the image can
be emphasized. For example, using a Laplacian of Gaussian (LOG) filter
produces a residual error which is sensitive to edge energy. Using Eqn. 2.9,

the residual at a pixel s in template I; can be written

A

Ri(a,s) = I(f;(q,s)) — I;(s) . (2.10)
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where [ and fj are the filtered input image and template, respectively. The

template error resulting from this residual choice is given by

Bla) =5 [ Rilas@ds=3 [ litas) — LsPds . 21

Each template in the object model contributes an error term of the form of
Eqn. 2.11.

The SSD residual is one possible choice from a large class of image sim-
ilarity measures [55, 25]. It is a traditional choice for template matching
applications, because it works well in practice. Any differentiable residual
could be employed in Eqn. 2.11 to measure the error, and the rest of the

framework would remain unchanged.

2.4.3 State Estimation by SSD Residual Minimization

The residual in Eqn. 2.10 is a nonlinear function of the state q. There
are two main sources of nonlinearity: trigonometric terms in the kinematic
model from Eqn. 2.9, and intensity variations in the template and input
images. Use of a perspective camera model introduces a secondary source of
nonlinearity. The kinematic model is a smooth function of the state. SSD
error functions are also observed empirically to be smooth and approximately
quadratic around their minima [4]. As a result, Eqn. 2.11 can be treated as
a smooth function of the state and minimized numerically through standard
gradient-based methods [14]. The use of continuous variable optimization
techniques is one of the key distinctions between the tracking approaches in
this thesis and [72], and the earlier works of O’Rourke [42] and Hogg [23].
These optimization techniques make it possible to search much larger state
spaces than classical interval analysis or constraint satisfaction approaches.
Given an error function like Eqn. 2.11, tracking can proceed by a sim-

ple gradient descent minimization algorithm. If Ej(-) denotes the state-
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dependent error for input image [}, the state update is given by:

ol
= i1 — p—(Qi_ 2.12
qr = 9k-1 — P aq (Qk 1) ( )

where p is the step size. The update step can be iterated when the inter-frame
motion is large. The estimate from the previous frame, possibly modified by
velocity-based prediction, serves as the starting point for minimization in the
current frame. Sec. 2.5.3 discusses the use of more sophisticated minimization
algorithms than gradient descent.

Differentiating Eqn. 2.11 yields

oF OR af ol
a_q_/fj Ria:s) % / RiGe o (2.13)

where OR;/0q denotes the residual Jacobian. The residual Jacobian is a
product of two terms, the derivative of the deformation function, and the
image gradient. Since the deformation function is a product of kinematic
transforms (see Eqn. 2.9,) its derivative must take the form of a kinematic
Jacobian. The derivation of this Jacobian and its on-line computation are
discussed in the next section. The Jacobian maps state velocities to the image
plane velocities of template pixels. It follows that the residual Jacobian at
an image point is a weighted combination of the kinematic Jacobian of its
associated link template point.

The key to the practical success of the gradient-based minimization ap-
proach is a high image sampling rate, which limits image motion between
frames. Templates will generate useful error signals only when they “see”
a significant portion of the link they are tracking, making it important to
limit motion in the image plane. In the state space, a region of convergence
(ROC) exists around the global minimum. Interframe motion must be small
enough for the predicted state, which determines the starting point for mini-
mization, to fall within the ROC at each image [64]. Analyzing the required
sampling rate is difficult, as it depends on the object state, the form of the



34 CHAPTER 2. TRACKING WITH KINEMATIC MODELS

residual error measure, and the image properties. However, experimental
results in Chpt. 4 indicate that image motions of five to ten pixels can be
handled successfully, corresponding to a 15 Hz sampling rate under normal

hand motion.

2.4.4 Deformation Function Jacobians

The deformation function of Eqn. 2.9 is a series of coordinate transforma-
tions. As a result, standard techniques from robotics (see [59], Sec. 5.1)
can be employed to compute its Jacobian. Let s; be a pixel in template [;
which projects to w; in the image plane. Let p; = F;s; denote the point’s
coordinates in the shape frame of link j. Suppose further that link frame ¢
has a revolute joint with angle §; that effects the position of frame j. Then
the basic Jacobian component, dw;/d0;, can be derived as follows.

The first step is to reorganize Eqn. 2.9, letting W denote the point p;

in world coordinates prior to camera projection, obtaining
fi(a,s) = PW; = PT}(q)p; = P[R}(q)p; + d3(q)] . (2.14)

where Ry and d.} are the rotation and translation components of T3, the
position of link j’s shape frame in world coordinates.

Separating the transform for W; into components before and after frame
1 and differentiating with respect to time yields

X d ; s s :
W, = ZIRL(RYp, +d7)+d)]

= dn, xR (R7p,; +d7) , (2.15)

where n!, is the rotation axis for joint 7 expressed in world coordinates. The

Jacobian follows immediately as

of; _ W,

50,5 = P55~ = P, x {ru(s;) —d,}] . (2.16)




2.5. TRACKING THROUGH FEATURE ALIGNMENT 35

The term in braces is the moment arm for the rotation of point s; about joint
i, expressed in world coordinates. It is determined by r,(-), a function which
gives the 3D position of a point in template coordinates with respect to the
world frame. From the form of Eqn. 2.16, the Jacobian component for a
revolute joint is obtained by projecting a spatial velocity vector into the image
plane. In cases where perspective effects are significant, the orthographic
mapping is replaced by an affine approximation to the perspective projection
at each link.

Using Eqn. 2.16 in a tracking algorithm involves the following steps: First,
the spatial positions of all frames are computed with respect to the world.
Then the revolute joints are examined in sequence. For each joint, the tem-
plate planes which it effects are processed in order. Each template pixel
involved in Eqn. 2.13 makes a contribution to the Jacobian which is deter-
mined solely by its position with respect to the active joint axis. The total
cost of the Jacobian computation depends on the number of templates, their
size in pixels, the DOFs of the object, and its kinematic topology. Empirical
evaluation of this cost and its ramifications for real-time implementation are
presented in Chpt. 4. The compact derivation of Eqn. 2.16 and the simplicity
of its computation are fortunate consequences of the highly regular structure

of spatial kinematic models.

2.5 Tracking Through Feature Alignment

In the template registration approach to visual tracking, intensity errors are
used to measure the geometric misalignment between the projected model
and the input image. Templates provide a useful level of generality, and
make it possible to exploit arbitrary texture cues. For a specific object like
the hand, however, the constraints provided by template matching can be
approximated by purely geometric error functions involving point and line

features. The advantage of this is two-fold. First, geometric residual errors
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tions can be obtained from the deformation function of Sec. 2.4.1. In this
case, only a single line in the template plane, corresponding to the central
axis of the cylindrical link, is mapped through the deformation function. If
s; represents a point along the central axis, its contribution to the residual

error is given by

li(a,s;) =m'w; —p=m'f;(q,s;)—p , (2.17)

where m = [a b].

The Jacobian component generated by this residual is

of; "
Jé(q, s;) = 8—0]1 m . (2.18)
The role of the line feature in approximating the template residual can be
seen by comparing FEqns. 2.18 and 2.13. In the line case, the normal vector
m plays the same role as the image gradient. It corresponds to an image

gradient field with a zero component along the central axis of the link.

2.5.2 Point Feature Residual and Jacobian

Links at the end of kinematic chains, like the fingertips of the hand, gener-
ate point features with parameters [z y], as illustrated in Fig. 2.7. The tip
residual measures the Euclidean distance in the image between the projected

model point and the actual tip location, c;, in the image:

vila,s;) = [[vila,s)ll = [[fi(a,s;) — ¢ - (2.19)
Its Jacobian component is given by

B 6ij V]‘

~oq vl

v
J

(2.20)

In this case, the unit vector in the v; direction models an image gradient

that is nonzero only along radial lines from the tip feature position.
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The residual functions in Eqns. 2.17 and 2.19 measure distances in the
image plane. The feature residuals for each link and tip in the model are
concatenated into a single residual vector, R(q). The total error is then

given by

E(q) = %R(q)TR(q) : (2.21)

This error will be quadratic in the distances from the hand model projections
to the image features. This agrees with the empirical observation that SSD
residual errors are quadratic around their minimum.

Although these approximations were motivated by the hand, they are
applicable to the body as well. The primary difference in between fingers
and limbs is that clothing can provide image gradient constraints in arbitrary
directions, unrelated to the central axis of the limb. However, clothing and
background color will still often differ significantly, resulting in a strong edge
constraint. If the interior texture is insignificant given the resolution of the

camera, then the line and point models can be applied without modification.

2.5.3 State Estimation by Feature Residual Minimiza-
tion

The state estimation problem can be achieved by minimizing the total error
in Eqn. 2.21. This is a classical nonlinear least-squares problem, which can
be solved numerically by Gauss-Newton minimization [14]. The GN state

update equation is given by
Qi1 = A — [Jka + S]_lJsz ) (2.22)

where Jj is the Jacobian matrix for the residual R, both of which are
evaluated at ;. S is a constant diagonal conditioning matriz used to stabilize
the least squares solution in the presence of kinematic singularities. Each

entry in S weights one of the state variables, determining how strongly it is
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Jacobians will be nonzero for all finger articulations, but they will all lie in
the line formed by intersecting the finger and image planes. This line will
be parallel to the feature measurement lines produced by the finger, leading
to loss of rank. The equations reflect the intuitively obvious fact that when
the finger is curling towards the camera, the motion of its edges contain no
information about the 3D motion.

Examination of the point feature Jacobian of Eqn. 2.20 indicates that
it possesses the same two singular configurations that the line does. How-
ever, the orthogonal case is much less serious for a point feature, as it does
not generate a singular subspace. This analysis demonstrates the value of
the closed form approximations to the template residuals. They lead to an
intuitive mathematical description of a basic property of articulated object
tracking problems.

As in the robot manipulator case [40], state space neighborhoods of the
singular points will exhibit marked sensitivity loss, in that large state space
motions will have little effect on the image. This sensitivity loss makes ac-
curate tracking in the neighborhood of singularities difficult. Experimental
observations of the effects of near-singular tracking are discussed in Chpt. 4.
The stabilization method of Eqn. 2.22, which has been used for rigid body

tracking [35], also works for articulated state estimation problems.

2.5.5 Tracking with Multiple Cameras

Both the template registration and feature alignment approaches generalize
easily to tracking with more than one camera. When multiple cameras are
used, the residual vectors from each camera are concatenated to form a single
global residual vector. This formulation exploits partial observations. If a
finger link is visible in one view but not in the another due to occlusion, the
single view measurement is still incorporated into the residual, and therefore

the estimate. When this framework is augmented with occlusion-handling,
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the resulting algorithm can utilize any visible pixel from any camera position
in estimating the state. Experimental articulated tracking results using two
cameras were first reported in [46, 48]. Two camera results for human body

tracking were presented more recently in [29, 32].

2.6 Discussion

Kinematic models made up of links and joints represent the most basic con-
straints on the motion of articulated kinematic chains, and make it possible to
recover 3D motion from a single image sequence. A kinematic hand model
was developed through anatomical analysis and calibrated using an inter-
active tracking system. Sections 2.4 and 2.5 described two approaches to
estimating the model state from an image sequence.

The template registration approach of Sec. 2.4 belongs to the class of
direct, energy-based vision algorithms which was popularized by deformable
models [65] (including 2D Snakes [28],) and has been applied to a wide variety
of problems [73, 53]. It is a direct method in which pixels are mapped to
state estimates without an intervening feature detection stage. Its advantage
is the direct enforcement of kinematic constraints on image interpretation.
These constraints integrate information from different parts of the image,
reducing the impact of localized interpretation errors on the final estimate.
This will turn out to be particularly useful in tracking self-occluding objects
in Chpt. 3.

Constraints in the classic energy-based approach take the form of a smooth-
ness penalty term which is added to the residual error in forming the objective
function. These soft constraints can be viewed as prior distributions over the
state space [62, 63]. They are enforced explicitly, reflecting the fact that the
size of the over-parameterized state space exceeds the actual DOFs in the
scene. In contrast, kinematic constraints are enforced implicitly through the

joint angle parameterization of articulated motion. Kinematic models are
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hard constraints— no amount of measurement error should cause the rigid
bodies in a chain to separate from each other, or rotate in ways not permitted
by their joints.

Section 2.5 demonstrates that the template residual functions for finger
phalanges can be approximated by geometric expressions in line and point
features. The result is a second tracking approach based on feature align-
ment. The residuals for point and line features have a closed form expression
which makes the singularity analysis of Sec. 2.5.4 possible. In addition, these
features can be detected through a simple algorithm which is suitable for

real-time implementation, as Sec. 4.3.1 will demonstrate.
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First Occludes Second First and Second Disjoint Second Occludes First

(@) (b) (c)

Figure 3.1: Three snapshots from a motion sequence, illustrating the different
occlusion relations between the first and second fingers of the hand.

main components. The first component is a wvistbility order for overlapping
templates, with the property that no template is occluded by a template
that follows it in the list. The visibility order can be used to determine
which template corresponds to a given region of pixels. The order between
templates changes with the state, as in the transition from figure (a) to (c).
In (a), the visibility order is { Template 1, Template 2}, while in (c) it is
the reverse. The second component in the layered model is a set of window
functions that block, or mask out, the contributions of occluded templates,
as determined by the visibility order. Each template has an attached window
function which moves with it as a function of the state.

Tracking using a layered representation requires the simultaneous solu-
tion of two problems: determining the visibility order for the templates that
describe an object, and registering the overlapping templates to the input
image. In bottom-up approaches to occlusion analysis, visibility order is es-
timated from image motion [11, 67] or contours [41]. This thesis explores

an alternative, top-down approach which uses the kinematic model in con-
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junction with a high image sampling rate to partition the state space into
regions with a fized visibility order. In this approach, the visibility order for
the current frame is predicted from the previous state estimate and used to
constrain image interpretation.

The following sections develop the layered template representation in
more detail, and describe its use in a model-based tracking algorithm for
self-occluding objects. The first step is an analysis of the visibility orders
for objects, like the hand, that are composed of planar kinematic chains.
The next step is the incorporation of visibility-ordered templates into the
registration algorithm of Sec. 2.4. Window functions provide a mathemat-
ical tool for arbitrating access to the image among overlapping templates.
They are incorporated into a residual error function, which is minimized
by gradient-based methods. The main computational step in gradient-based
minimization is the Jacobian computation for layered templates, which is de-
scribed in detail. This is followed by a discussion of image segmentation, and
an outline of the complete tracking algorithm. The final contribution of this
chapter is an analysis of the existence conditions for the invariant visibility
orders employed in tracking. Occlusion ambiguities, in which the visibility
order is not invariant, are introduced and their ramifications for tracking are

discussed.

3.1 Model-based Occlusion Analysis

The tracking algorithm developed in this chapter is based on a simple ob-
servation: the occlusion relationships between the convex rigid bodies of an
articulated object in motion rarely change instantaneously. As a result, the
visibility order for the object templates is invariant under the small motions
that occur between two frames of an image sequence, given a high sampling
rate. This invariant order makes it possible to remove the discrete, com-

binatoric aspect of occlusion from the tracking problem, leaving only the
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Disjoint
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Figure 3.2: The partition of the rotation space (unit circle) into regions with
an invariant visibility order. This is a top view of the scene in Fig. 3.1, with
the camera located on the right. ¢ gives the rotation of the hand relative to
the camera.

registration of overlapping templates. In this section, the use of an invariant
visibility order in tracking is illustrated for the two finger motion sequence
of Fig. 3.1.

Figure 3.2 shows the visibility order for the fingers in Fig. 3.1 as a function
of the hand state. Since the hand has one DOF in this example, the space
of rotations is a unit circle. The angles marked A, B,C, D denote occlusion
events, points at which the occlusion relations change. Passing through ¢ =
A, for example, causes a transition from (a) to (b). The amount of hand
rotation between frames is limited by the sampling rate to a small angle,
A¢. Therefore, in local tracking the state estimate for the current frame

is restricted to a motion interval of £A¢ around the previous estimate. If
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the ¢p_1 is the state from the previous frame, then it follows that ¢, €
(651 — Ay by + A,

Since the occlusion events are sparsely distributed, the visibility order
for the two templates will be constant from frame to frame across most of
the image sequence. The template order in cases (a) and (c), for example,
holds for nearly 90 degrees of hand rotation, which is much larger than A¢.
When the motion interval contains an occlusion event, the visibility order
will change. However, the transition always occurs between an occluded
and a disjoint case. As a result, the onset of occlusion can be anticipated
by assigning the occluded visibility order to the disjoint case near the event.
This assignment is achieved by growing the occluded regions into the disjoint
regions by the motion bound, A¢, resulting in the state space partition shown
in Fig. 3.2 as dark and light grey bands.

The partition illustrated in Fig. 3.2 divides the state space into regions
with a locally invariant visibility order. This partition has the following
property: Given the state of the object at time k, its membership in the
state partition determines the visibility order at time k 4+ 1. The occluded
partitions (the light and dark grey sets in Fig. 3.2) contain all of the states
that lie within £A¢ of an occluded configuration. The disjoint partitions
(the white sets in Fig. 3.2) contain the states for which there are guaranteed
to be no occlusions under bounded motion. These sets form a buffer zone
in which the tracker can be configured for the next occlusion event. The
partition is used in visual tracking problems to predict the visibility order for
the current, unknown state from the previous state estimate. The predicted
visibility order is used in turn to construct a layered template representation
of the image, thereby reducing the tracking problem to the registration of
overlapping templates between frames.

The construction of the partition in Fig. 3.2 depends on three properties
of the motion and the estimator. First, the regions in state space in which

the templates occlude each other must be separated by regions in which
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they are disjoint. Second, the change in state between frames must be small
enough to take advantage of the disjoint regions. If A¢ is too large, growing
the occluded regions will eliminate the disjoint regions entirely. Third, the
state estimate must be accurate enough to make useful predictions about
membership in the partition. These issues are addressed in more detail in

the sections that follow.

3.2 Visibility Orders for Planar Kinematic
Chains

A key step in the tracking algorithm for self-occluding motion is the con-
struction of visibility orders for link templates. A wisibility order for the
bodies in an articulated object is an ordered list with the property that each
body will not be occluded by any of the bodies that follow it. The next three
sections present a set of rules for constructing invariant visibility orders for
objects, like the hand, that are composed of planar kinematic chains. Section
3.4 discusses the existence of these invariant orders in the general case. The

simplest type of visibility order is a binary occlusion relation between two

bodies.

3.2.1 Binary Occlusion Relations

When the image plane projections of two objects overlap, and the visibility
of one of them (object A) is completely unaffected by the other (object B),
it 1s called a binary occlusion and A occludes B. If two solid objects have
convex shapes, then any occlusion between them will be binary.!

Consider a pair of convex objects undergoing bounded motion, such as

would occur between two frames in an image sequence. If the image plane

! Any two convex bodies can be separated by a plane which divides the viewing sphere
in half, and for all view points in each half, the object it contains is completely visible.
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angle 0,, between F, and A:

6,>0: 0;,€][0,0,] = B occludes A
6, €0, —m, 0] = A occludes B (3.1)
6,<0: 0;€][0,,0] = B occludes A '
§,€[0,0,+7] = A occludes B

In Fig. 3.3, 0, > 0 and 0, — 7 < 0; <0, so that A is occluding B. Occlusion
properties change at the boundaries of the intervals. Note that 6; is bounded

away from zero on both sides by noninterpenetration.

As the viewpoint moves out of the joint plane, the amount of occluded
surface area decreases. When the general viewing vector, F., is parallel to
n; there is essentially no occlusion for all joint angles. E makes an angle
f,, with the joint plane, in which it has the projection K,. It follows that
any viewing direction can be represented in the joint coordinate frame by
two angles: 8, and 8,,. The occlusion conditions from FEqn. 3.1 apply only to
viewpoints for which |0,| < A, for some fixed threshold A,. For viewpoints

above this threshold, the links are disjoint.

Given the state of an articulated object, Eqn. 3.1 can be applied to de-
termine the occlusion at a revolute joint. To use this model for tracking, it
must be extended to include bounded motions of the two links. Bounded
change in the DOFs before link A in the kinematic chain will displace the
joint coordinate frame, causing 6, and 8, to vary. The exact change in these
angles will be a complex function of the state, but it can be approximated by
restricting them to intervals, [,, and [,, of a fixed size, centered around their
current value. Bounded motion between B and A is modeled by an interval
I; = [09 — A;, 09 + Aj], of width A; containing ;. The intervals I, and
I, are defined similarly. These intervals can be incorporated into Eqn. 3.1
by replacing inequalities with intersection tests. The normal, viewing, and

joint angles at the current state are %, 8%, and (9?, respectively. The revolute
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occlusion relations are

LN[=AnA]#0: 00>0: [,N[0,00+A,]#0 = B+ A
LN —-A,—m0#0 = A-B
0 <0: ,N[0°—A,,0#0 = B> A (3.2)
LN[0,00+A, +7]#£0 = A-B
Otherwise = A=HB

3.2.3 Visibility Orders for Hand Templates

The kinematic properties of objects like the hand can be exploited in an
algorithm for visibility ordering link templates. In this approach, templates
are ordered within each finger chain using the revolute occlusion relation de-
scribed above. Then the chains are compared as distinct objects, avoiding
the complexity of testing each link against all the others. By exploiting the
kinematic structure, the algorithm is efficient enough for on-line implemen-
tation. A more general approach to computing visibility orders from binary
occlusion relations is described in Sec. 3.4.2

The hand consists of five planar kinematic finger chains and a rigid palm.
As a result of planarity, the three joint axes in each finger are parallel and
have the same joint plane. This greatly simplifies the application of revolute
occlusion relations to finge